Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelos de IA generativa podrían encontrar aplicación en TC de rayos X de dosis baja y resonancia magnética acelerada

Por el equipo editorial de MedImaging en español
Actualizado el 06 Feb 2024

Los modelos de difusión son un tipo de modelos generativos profundos que tienen mucho éxito en aplicaciones como la generación de imágenes y la síntesis de audio, así como en imágenes médicas y diseño de moléculas. Los modelos de difusión están diseñados para aprender la distribución de los datos, lo cual es importante para descifrar datos complejos y a gran escala del mundo real. Actualmente, existen varias limitaciones con respecto a las aplicaciones prácticas de los modelos de difusión. Por ejemplo, el entrenamiento y la inferencia de modelos de difusión requieren un uso intensivo de datos y son computacionalmente exigentes, lo que limita su uso en varias disciplinas científicas. Las imágenes generadas en imágenes médicas del mundo real son siempre de alta resolución y alta dimensión, mucho más allá de lo que pueden gestionar los modelos de difusión existentes en términos de memoria y eficiencia de tiempo. Además, los modelos de difusión tienen un tiempo de inferencia indeseablemente largo debido al procedimiento de muestreo iterativo.

El equipo de investigación de Ingeniería de Michigan de la Universidad de Michigan (Ann Arbor, MI, EUA) está trabajando en el desarrollo de modelos de difusión nuevos y más eficientes que puedan superar las limitaciones actuales. El equipo se centra en examinar cómo se pueden aplicar los modelos de difusión a problemas inversos, que es cuando se utiliza un conjunto de observaciones para determinar los factores que generaron los resultados. El equipo está trabajando para mejorar la aplicabilidad práctica y la interpretabilidad matemática de los modelos de difusión mediante el desarrollo de nuevos diseños de arquitectura e incrustaciones latentes.

Los investigadores también están desarrollando nuevas técnicas para mejorar la eficiencia del entrenamiento y el muestreo de los modelos de difusión. Están trabajando para crear modelos de difusión computacionalmente eficientes para datos de alta dimensión que podrían mejorar aún más la eficiencia de los datos, la memoria y el tiempo. Esto podría mejorar significativamente aplicaciones como las imágenes biomédicas de alta resolución y altas dimensiones, así como la predicción del movimiento basada en imágenes dinámicas de alta dimensión.

"Los modelos generativos son uno de los temas más candentes en el aprendizaje automático en este momento y estoy entusiasmado de tener la oportunidad de investigar su potencial para resolver problemas inversos, especialmente en imágenes médicas", dijo Fessler, profesor colegiado William L. Root de EECS. "Esperamos aplicar los métodos desarrollados en este proyecto a aplicaciones de imágenes médicas en 3D a gran escala, como la TC de rayos X de baja dosis y la resonancia magnética acelerada".

Enlaces relacionados:
Universidad de Michigan

New
HF Stationary X-Ray Machine
TR20G
X-ray Diagnostic System
FDX Visionary-A
3T MRI Scanner
MAGNETOM Cima.X
New
Specimen Radiography System
Trident HD
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.