Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 17 Apr 2024

El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos. Diferenciar entre estas neoplasias malignas es crucial porque cada tipo exige una estrategia de tratamiento específica, pero presenta un desafío clínico. Actualmente, el diagnóstico no invasivo de los tumores cerebrales se basa en el análisis de imágenes por resonancia magnética (RMN) antes y después de la administración de agentes de contraste. Sin embargo, un diagnóstico concluyente a menudo requiere procedimientos neuroquirúrgicos, que pueden afectar negativamente la calidad de vida del paciente. Ahora, una herramienta de aprendizaje profundo aprovecha los datos de las imágenes por resonancia magnética (RMN) para clasificar con precisión los tumores cerebrales, ayudando así a los médicos a tomar decisiones informadas.

El Diagnóstico en Regiones de Mejora del Contraste de Susceptibilidad para Neuroncología (DISCERN) es una herramienta de aprendizaje profundo y de acceso abierto desarrollada conjuntamente por investigadores del Instituto de Oncología Vall d'Hebron (VHIO, Barcelona, España) y el Hospital Universitario de Bellvitge (Barcelona, España). Se basa en el entrenamiento de patrones utilizando modelos de inteligencia artificial (IA) extraídos de información estándar de resonancia magnética. DISCERN interpreta los datos espaciales y temporales completos disponibles en las resonancias magnéticas convencionales para reconocer patrones específicos de tumores.

Al emplear el aprendizaje profundo, el sistema aprende a distinguir entre las características de varios tumores basándose en exploraciones por resonancia magnética de pacientes previamente diagnosticados. Un estudio liderado por el VHIO demostró la capacidad de DISCERN para facilitar el diagnóstico preciso de tumores cerebrales mediante resonancia magnética de perfusión, superando la precisión de los métodos de diagnóstico tradicionales. Con una tasa de precisión del 78 % en la clasificación de estos cánceres cerebrales comunes, DISCERN representa un avance significativo en el campo. Los desarrolladores han hecho accesible DISCERN a través de una aplicación de código abierto fácil de usar para promover su uso generalizado en la investigación clínica y mejorar la reproducibilidad de los hallazgos.

“DISCERN es una herramienta informática de apoyo al diagnóstico que facilita la clasificación de tumores cerebrales para ayudar a guiar la toma de decisiones médicas por parte de equipos multidisciplinarios con respecyo a la necesidad y el tipo de cirugía necesaria para confirmar el diagnóstico”, afirma Carles Majós, neurorradiólogo clínico e investigador del Hospital Universitario de Bellvitge.

Enlaces relacionados:
VHIO
Hospital Universitario de Bellvitge

NMUS & MSK Ultrasound
InVisus Pro
3T MRI Scanner
MAGNETOM Cima.X
40/80-Slice CT System
uCT 528
Radiology Software
DxWorks
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.