Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA alcanza precisión a nivel clínico experto al analizar imágenes por resonancia magnética complejas y escaneos médicas 3D

Por el equipo editorial de MedImaging en español
Actualizado el 18 Oct 2024

Las redes neuronales artificiales se entrenan realizando cálculos repetidos sobre grandes conjuntos de datos que han sido cuidadosamente examinados y etiquetados por expertos clínicos. Mientras que las imágenes 2D estándar muestran longitud y anchura, las tecnologías de imágenes 3D introducen profundidad, creando imágenes "volumétricas" que requieren más tiempo, habilidad y atención para la interpretación experta. Por ejemplo, una exploración de imágenes de retina 3D puede constar de casi 100 imágenes 2D, lo que requiere varios minutos de examen minucioso por parte de un especialista altamente capacitado para identificar biomarcadores sutiles de la enfermedad, como medir el volumen de una hinchazón anatómica. Ahora, los investigadores han desarrollado un marco de aprendizaje profundo que se entrena rápidamente para analizar y diagnosticar automáticamente las resonancias magnéticas y otras imágenes médicas 3D, logrando una precisión comparable a la de los expertos médicos, pero en una fracción del tiempo.

A diferencia de otros modelos en desarrollo para el análisis de imágenes en 3D, el nuevo marco creado por investigadores de UCLA (Los Ángeles, CA, EUA) es muy adaptable a diversas modalidades de obtención de imágenes. Se ha estudiado con exploraciones de retina en 3D (tomografía de coherencia óptica) para biomarcadores de riesgo de enfermedades, videos de ultrasonidos para la evaluación de la función cardíaca, exploraciones de resonancia magnética en 3D para evaluar la gravedad de la enfermedad hepática y exploraciones de TC en 3D para la detección de neoplasias malignas en nódulos torácicos. En un artículo publicado en la revista Nature Biomedical Engineering, los investigadores destacan las amplias capacidades del sistema, lo que sugiere que podría ser valioso en muchos otros entornos clínicos. Se planean estudios adicionales para explorar más a fondo sus aplicaciones.

El modelo de la UCLA, llamado SLIViT (SLice Integration by Vision Transformer), presenta una combinación única de dos componentes de inteligencia artificial y un enfoque de aprendizaje especializado. Según los investigadores, esta combinación le permite predecir con precisión los factores de riesgo de enfermedades a partir de exploraciones médicas en múltiples modalidades volumétricas, incluso con conjuntos de datos etiquetados de tamaño moderado. La anotación automatizada de SLIViT podría beneficiar tanto a los pacientes como a los médicos al mejorar la eficiencia y la puntualidad del diagnóstico, al tiempo que avanza en la investigación médica al reducir los costos de adquisición de datos y acortar el tiempo necesario para la recopilación de datos. Además, establece un modelo fundamental que puede acelerar el desarrollo de futuros modelos predictivos.

“SLIViT supera el cuello de botella del tamaño del conjunto de datos de entrenamiento aprovechando el 'conocimiento médico' previo del dominio 2D más accesible”, dijo Berkin Durmus, estudiante de doctorado de la UCLA y coautor principal del artículo. “Mostramos que SLIViT, a pesar de ser un modelo genérico, logra consistentemente un rendimiento significativamente mejor en comparación con los modelos de vanguardia específicos del dominio. Tiene potencial de aplicabilidad clínica, igualando la precisión de la experiencia manual de los especialistas clínicos al tiempo que reduce el tiempo en un factor de 5.000. Y a diferencia de otros métodos, SLIViT es lo suficientemente flexible y robusto como para trabajar con conjuntos de datos clínicos que no siempre están en perfecto orden”.

X-ray Diagnostic System
FDX Visionary-A
Portable Color Doppler Ultrasound System
S5000
Computed Tomography System
Aquilion ONE / INSIGHT Edition
NMUS & MSK Ultrasound
InVisus Pro
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

Ultrasonido

ver canal
Imagen: el nuevo tipo de célula T Sonogenetic EchoBack-CAR (Foto cortesía de Longwei Liu/USC)

Células inmunitarias activadas por ultrasonido destruyen células cancerosas

La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.