Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

Por el equipo editorial de MedImaging en español
Actualizado el 18 Apr 2024
Print article
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas impulsadas por IA para ayudar a diagnosticar una variedad de afecciones médicas, ofreciendo apoyo a los radiólogos brindando opiniones adicionales o priorizando a los pacientes que requieren atención urgente. Estos sistemas de IA también promueven la equidad en la atención médica al garantizar que los pacientes reciban experiencia constante y evaluaciones de imágenes oportunas, independientemente de la ubicación del hospital. Esto es particularmente beneficioso para las enfermedades raras, que los radiólogos pueden no encontrar con frecuencia, ya que la IA tiene acceso a un rango más amplio de información. Ahora, un estudio histórico que involucra el análisis de imágenes de linfoma asistido por IA, un tipo de cáncer que afecta el sistema linfático, destaca los avances recientes en los métodos asistidos por computadora para interpretar imágenes médicas.

Investigadores de la Universidad Tecnológica de Chalmers (Gotemburgo, Suecia) han desarrollado un modelo informático llamado Lars (siglas en inglés para Sistema Lector Artificial de Linfoma) que identifica con precisión los signos de cáncer de ganglio linfático en el 90 % de los casos. Basándose en más de 17.000 imágenes de más de 5.000 pacientes con linfoma, Lars ha sido entrenado para detectar signos visuales de cáncer en el sistema linfático. Los investigadores utilizaron archivos de imágenes que abarcan más de una década y compararon los diagnósticos finales de los pacientes con sus tomografías por emisión de positrones (PET) y tomografías computarizadas (TC) tomadas antes y después del tratamiento.

Lars examina las imágenes PET para detectar patrones que indiquen la presencia o ausencia de linfoma. El modelo de IA fue entrenado para detectar signos de cáncer de ganglio linfático sin ser programado con instrucciones predeterminadas para buscar en las imágenes, lo que le permite aprender por sí mismo qué patrones son cruciales para realizar predicciones precisas. A pesar de los resultados prometedores, es esencial una mayor validación antes de que Lars pueda implementarse en entornos clínicos, lo que marca los próximos pasos hacia la integración de la IA en el diagnóstico de salud.

"En el estudio estimamos que la precisión del modelo informático es de alrededor del noventa por ciento y, especialmente en el caso de imágenes difíciles de interpretar, podría ayudar a los radiólogos en sus evaluaciones", afirmó Ida Häggström, profesora asociada del departamento de Ingeniería Eléctrica en Chalmers.

Enlaces relacionados:
Universidad Tecnológica de Chalmers

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table
New
Ultrasound Scanner
TBP-5533
Fixed X-Ray System (RAD)
Allengers 325 - 525

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.