Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Las tomografías computarizadas rutinarias pueden identificar a personas en riesgo de diabetes tipo 2

Por el equipo editorial de MedImaging en español
Actualizado el 15 Aug 2024
Print article
Imagen: El análisis automatizado de TC multiorgánico identificó a personas con alto riesgo de diabetes y afecciones asociadas (foto cortesía de Shutterstock)
Imagen: El análisis automatizado de TC multiorgánico identificó a personas con alto riesgo de diabetes y afecciones asociadas (foto cortesía de Shutterstock)

La creciente prevalencia de la diabetes y sus complicaciones ha generado la necesidad de explorar métodos diagnósticos avanzados que puedan mejorar la detección temprana y la evaluación del riesgo. Ahora, un nuevo estudio ha demostrado cómo las tomografías computarizadas (TC), que se utilizan habitualmente para cribados de salud, también pueden emplearse para identificar a individuos en riesgo de desarrollar diabetes tipo 2. Este concepto, conocido como imagenología oportunista, aprovecha los datos de imagen rutinarios para obtener información sobre la salud general de un paciente, aumentando el valor de las tomografías más allá de su uso tradicional.

En este estudio realizado en la Facultad de Medicina de la Universidad Sungkyunkwan (Seúl, Corea del Sur), los investigadores evaluaron el poder predictivo de los marcadores automatizados derivados de TC para la diabetes y sus afecciones relacionadas. La cohorte estuvo compuesta por 32.166 adultos, de 25 años o más, que se sometieron a exámenes de salud que incluyeron exploraciones PET/TC con 18F-fluorodesoxiglucosa (18F-FDG). Se emplearon algoritmos avanzados de aprendizaje profundo para realizar la segmentación 3D y la cuantificación de diversas características anatómicas, como la grasa visceral, la grasa subcutánea, la masa muscular, la densidad del hígado y el calcio aórtico a partir de las imágenes de TC. Al inicio del estudio, el el 6 % de los participantes vivían con diabetes y, durante un período de seguimiento medio de 7,3 años, el 9 % desarrolló la enfermedad.

Los hallazgos del estudio, publicado en la revista Radiology, revelaron que las tomografías computarizadas pueden identificar de manera efectiva a personas con riesgo elevado de diabetes y problemas de salud relacionados. Entre los marcadores derivados de la TC, la medición de la grasa visceral fue particularmente eficaz para predecir la probabilidad de desarrollar diabetes. Cuando este marcador se analizó junto con otros (área muscular, fracción de grasa hepática y calcificación aórtica), la precisión predictiva aumentó aún más. Los indicadores basados en TC también demostraron ser más eficaces que los factores de riesgo tradicionales para predecir afecciones asociadas con la diabetes, como el hígado graso identificado mediante ecografía, puntuaciones de calcio en las arterias coronarias superiores a 100, osteoporosis y sarcopenia. Estos conocimientos sugieren que los marcadores derivados de la TC podrían perfeccionar significativamente los enfoques tradicionales utilizados en la detección de diabetes y la estratificación del riesgo, ofreciendo una herramienta de evaluación más completa en entornos clínicos.

“Los resultados son alentadores ya que demuestran el potencial de ampliar el papel de la imagenología por TC, pasando del diagnóstico convencional de enfermedades al cribado proactivo oportunista. Este análisis de TC automatizado mejora la predicción de riesgos y las estrategias de intervención temprana para la diabetes y problemas de salud relacionados”, afirmó el autor principal del estudio, Seungho Ryu, MD, Ph.D., del Hospital Kangbuk Samsung de la Facultad de Medicina de la Universidad Sungkyunkwan. "Al integrar estas técnicas de imagen avanzadas en los cribados de salud oportunistas, los clínicos pueden identificar a individuos con alto riesgo de diabetes y sus complicaciones de manera más precisa y temprana que con el enfoque actual. Esto podría conducir a intervenciones más personalizadas y oportunas, mejorando en última instancia los resultados para los pacientes”.

Enlaces relacionados:
Facultad de Medicina de la Universidad Sungkyunkwan

New
Ultrasound Table
General 3-Section Top EA Ultrasound Table
New
Digital X-Ray Detector Panel
Acuity G4
Wall Fixtures
MRI SERIES
New
Digital Radiography System
DigiEye 330

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.