Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Analizan datos de resonancia magnética mediante aprendizaje automático para predecir progresión de tumor cerebral

Por el equipo editorial de MedImaging en español
Actualizado el 17 Jan 2023
Print article
Los investigadores han utilizado datos de resonancia magnética para personalizar aún más la medicina contra el cáncer (Fotografía cortesía de Pexels)
Los investigadores han utilizado datos de resonancia magnética para personalizar aún más la medicina contra el cáncer (Fotografía cortesía de Pexels)

El glioblastoma multiforme (GBM), un cáncer cerebral que tiene una tasa de supervivencia promedio de solo un año, puede ser difícil de tratar debido a su núcleo altamente denso, rápido crecimiento y ubicación. A los médicos les resulta difícil estimar de forma rápida y precisa la difusividad y la tasa de proliferación de estos tumores en un paciente individual. Ahora, los investigadores han creado un modelo computacional que utiliza datos de resonancia magnética para predecir con mayor precisión el crecimiento de estos tumores cerebrales mortales.

Investigadores de la Universidad de Waterloo (Waterloo, ON, Canadá) analizaron datos de resonancia magnética de varios pacientes de GBM utilizando el aprendizaje automático para predecir mejor la progresión del cáncer. El equipo analizó dos conjuntos de resonancias magnéticas de cada uno de los cinco pacientes con GBM que se sometieron a resonancias magnéticas extensas, esperaron durante meses y luego recibieron otro conjunto de resonancias magnéticas. Dado que estos pacientes optaron por no recibir ningún tratamiento o intervención durante este tiempo, los investigadores tuvieron una oportunidad única de examinar cómo crece el GBM cuando no se controla, mediante el análisis de sus resonancias magnéticas.

Usando un modelo de aprendizaje profundo, los investigadores convirtieron los datos de resonancia magnética en estimaciones de parámetros específicos del paciente que informan un modelo predictivo para el crecimiento de GBM. Aplicaron esta técnica a los tumores de los pacientes y sintéticos, de los que se conocían las características reales, lo que les permitió validar el modelo. Los científicos ahora tienen un buen modelo de cómo crece GBM sin tratamiento y ahora ampliarán el modelo para incluir el impacto del tratamiento en los tumores. El conjunto de datos luego crecería de un puñado de resonancias magnéticas a miles. Según los investigadores, el acceso a los datos de resonancia magnética y la asociación entre matemáticos y médicos pueden tener un impacto significativo en los pacientes en el futuro.

“La integración del análisis cuantitativo en el cuidado de la salud es el futuro”, dijo Cameron Meaney, candidato a doctorado en Matemáticas Aplicadas e investigador principal del estudio.

NMUS & MSK Ultrasound
InVisus Pro
Ultrasound Imaging System
P12 Elite
New
HF Stationary X-Ray Machine
TR20G
New
Ultrasound Needle Guide
Ultra-Pro 3

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.