Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje automático ayuda al diagnóstico y pronóstico del cáncer de próstata mediante resonancia magnética

Por el equipo editorial de MedImaging en español
Actualizado el 29 Mar 2023
Print article
Imagen: Una nueva investigación aprovecha el poder del aprendizaje automático en las imágenes de cáncer de próstata (Fotografía cortesía del Sistema de Salud de UMiami)
Imagen: Una nueva investigación aprovecha el poder del aprendizaje automático en las imágenes de cáncer de próstata (Fotografía cortesía del Sistema de Salud de UMiami)

La resonancia magnética (RM) convencional es una herramienta confiable para el pronóstico, el diagnóstico, la vigilancia activa y la reducción de la necesidad de procedimientos de biopsia en pacientes con cáncer de próstata de bajo riesgo. La integración de datos de código abierto con modelos de aprendizaje automático ha creado nuevas oportunidades para estudiar la progresión y regresión de enfermedades, particularmente en el campo médico. Sin embargo, la incorporación efectiva del aprendizaje automático en la atención al paciente plantea varios desafíos, como la optimización de los enfoques de aprendizaje automático para cánceres específicos, garantizar la especificidad adecuada de los datos de entrenamiento para una afección médica en particular y más. En este contexto, las redes adversariales generativas (GAN) se están explorando como una posible solución para generar datos sintéticos de alta calidad que representen con precisión la variabilidad clínica de una afección y se puedan aplicar a una variedad de tecnologías de imágenes, incluidas PET, TC, RM, ecografía y radiografías del cerebro, el abdomen y el tórax. Sin embargo, aunque ha habido cierto éxito, el uso de modelos GAN actualmente es limitado cuando se trata de representar con precisión la heterogeneidad de enfermedades complejas como el cáncer de próstata.

Un equipo de investigadores traslacionales del Sistema de Salud de la Universidad de Miami (Miami, FL, EUA) está liderando el camino para mejorar las herramientas GAN para la integración con herramientas de diagnóstico y pronóstico en la investigación del cáncer de próstata. Al requerir menos datos y seguimientos de pacientes, GAN tiene el potencial de revolucionar los modelos de aprendizaje automático y reducir los costos de atención médica y la incomodidad del paciente asociada con las consultas de seguimiento repetidas. El objetivo es utilizar las capacidades de aprendizaje automático de GAN para generar imágenes digitales que aprenden de imágenes de resonancia magnética anteriores y parámetros clínicos, y predicen la progresión de la enfermedad o los patrones de regresión.

El equipo de investigación realizó un estudio utilizando resonancias magnéticas de próstata y patología digital de múltiples fuentes como datos de entrenamiento para desarrollar un modelo GAN. Con el aprendizaje profundo, entrenaron al modelo para segmentar el límite de la próstata en los cortes histológicos y de resonancia magnética, que proporcionan estructuras de tejido microscópicas. Expertos con diferentes niveles de experiencia evaluaron las imágenes generadas en comparación con imágenes de resonancia magnética tradicional de la próstata. El estudio demostró que las resonancias magnéticas del cáncer de próstata producidas con el modelo eran de alta calidad. La segmentación de aprendizaje profundo ayudó a eliminar imágenes con una distorsión importante, lo que indica que este modelo de aprendizaje automático GAN para imágenes de cáncer de próstata tiene implicaciones prometedoras para casos de pacientes complejos.

"El diagnóstico y la evaluación oportunas del pronóstico son desafíos para el cáncer de próstata, y esto resulta en muchas muertes y aumenta [el riesgo de progresión de la enfermedad]", dijo Himanshu Arora, Ph.D., profesor asistente en Sylvester y el Instituto de Urología Desai Sethi en el Escuela de Medicina Miller. “No podemos reemplazar el ojo humano cuando se trata de la toma de decisiones médicas. Aún así, la mejora en las tecnologías podría ayudar potencialmente a los oncólogos de radiación a tomar decisiones oportunas”.

“Técnicamente, la tecnología desarrollada aquí es el principio para construir modelos más sofisticados de 'aumento de datos' donde las nuevas imágenes digitales pueden usarse en análisis posteriores. Esta es una fase temprana de nuestro estudio, pero los resultados son extremadamente prometedores”, agregó el Dr. Arora.

Enlaces relacionados:
Sistema de Salud de la Universidad de Miami

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
3T MRI Scanner
MAGNETOM Cima.X
New
Ultrasound Imaging System
P12 Elite
Miembro Plata
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

Ultrasonido

ver canal
Imagen: un prototipo del dispositivo desarrollado (foto cortesía de KTU)

Dispositivo de ultrasonido mejora de forma no invasiva la circulación sanguínea en las extremidades inferiores

La circulación sanguínea deficiente en las extremidades inferiores es un problema de salud común entre los ancianos y es una complicación significativa de la diabetes, a menudo... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.