Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de reconstrucción basado en aprendizaje profundo reduce a la mitad tiempos de exploración de resonancia magnética lumbar

Por el equipo editorial de MedImaging en español
Actualizado el 13 Jul 2023
Print article
Imagen: Se ha demostrado que un algoritmo de reconstrucción basado en el aprendizaje profundo mejora los tiempos de exploración de resonancia magnética lumbar (Fotografía cortesía de Freepik)
Imagen: Se ha demostrado que un algoritmo de reconstrucción basado en el aprendizaje profundo mejora los tiempos de exploración de resonancia magnética lumbar (Fotografía cortesía de Freepik)

El dolor de la espalda baja, con su miríada de causas comunes y potenciales, a menudo se puede identificar a través de imágenes de resonancia magnética (IRM), una modalidad de diagnóstico por imágenes que se utiliza cada vez más en la medicina moderna. La resonancia magnética ofrece una resolución superior de los tejidos blandos y no expone a los pacientes a radiación ionizante. Sin embargo, se ve afectada por tiempos de adquisición largos y la necesidad de ajustes de parámetros para mejorar la calidad de la imagen, lo que puede prolongar aún más los tiempos de escaneo. En los últimos años, la inteligencia artificial (IA), específicamente el aprendizaje profundo (DL), ha logrado avances significativos en varias áreas de imágenes, incluida la clasificación de imágenes, la segmentación, la eliminación de ruido, la superresolución y la síntesis/transformación de imágenes. Sin embargo, aún no se ha explorado el impacto de los algoritmos de IA en la adquisición rutinaria del protocolo completo de la columna lumbar por resonancia magnética.

En un nuevo estudio, investigadores del Hospital Universitario Sant'Andrea (Roma, Italia) compararon la calidad de imagen cuantitativa y subjetiva, el tiempo de escaneo y la confianza diagnóstica entre un algoritmo novedoso de reconstrucción basado en el aprendizaje profundo (DLR) y el protocolo de resonancia magnética estándar para la zona lumbar. Mediante el uso del algoritmo DLR, los investigadores pudieron reducir a la mitad la duración de los exámenes de resonancia magnética lumbar. Además, estos tiempos de escaneo mejorados no comprometieron la calidad de la imagen, sino que mejoraron la relación señal-ruido. Para este estudio, se aplicó el algoritmo AIR Recon DL de GE Healthcare aprobado por la FDA a los exámenes de 80 voluntarios sanos que se sometieron a un examen de resonancia magnética de 1,5 T de la columna lumbar entre septiembre de 2021 y mayo de 2023. Se utilizaron tanto el algoritmo DLR como los protocolos estándar para secuencias completas, que posteriormente fueron valoradas por dos radiólogos que desconocían las técnicas de reconstrucción empleadas.

El algoritmo DLR produjo una reducción notable en el tiempo de exploración del protocolo, reduciéndolo de casi 13 minutos a poco más de 6 minutos. Los radiólogos cegados informaron que el algoritmo de reconstrucción proporcionó una SNR más alta en todas las secuencias y una CNR superior para imágenes de eco de espín rápido ponderadas en T2 axiales y sagitales. Ambos lectores calificaron la calidad de imagen general para todas las secuencias como superior con el DLR, lo que llevó al equipo de investigación a sugerir que el protocolo DLR se puede integrar de manera segura en la práctica clínica. El equipo también notó los beneficios adicionales de acortar los protocolos de resonancia magnética lumbar, incluida la rentabilidad y una mejora en el cumplimiento del paciente, especialmente para aquellos que son claustrofóbicos o experimentan dolor físico intenso.

Enlaces relacionados:
Hospital Universitario Sant'Andrea  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Ultra-Flat DR Detector
meX+1717SCC
New
40/80-Slice CT System
uCT 528
New
Opaque X-Ray Mobile Lead Barrier
2594M

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

Ultrasonido

ver canal
Imagen: un prototipo del dispositivo desarrollado (foto cortesía de KTU)

Dispositivo de ultrasonido mejora de forma no invasiva la circulación sanguínea en las extremidades inferiores

La circulación sanguínea deficiente en las extremidades inferiores es un problema de salud común entre los ancianos y es una complicación significativa de la diabetes, a menudo... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.