Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Método revolucionario combina fMRI con aprendizaje automático para predecir riesgo de mortalidad en pacientes de UCI con lesión cerebral grave

Por el equipo editorial de MedImaging en español
Actualizado el 26 Sep 2023
Print article
Imagen: La nueva técnica puede predecir qué pacientes se recuperarán de una lesión cerebral grave con una precisión del 80 % (Fotografía cortesía de Freepik)
Imagen: La nueva técnica puede predecir qué pacientes se recuperarán de una lesión cerebral grave con una precisión del 80 % (Fotografía cortesía de Freepik)

Las lesiones cerebrales graves, ya sea que se deriven de un derrame cerebral, un paro cardíaco o un evento traumático, pueden tener consecuencias que alteran la vida de los pacientes y sus familias. En el caso de los pacientes ingresados en la unidad de cuidados intensivos (UCI) por lesión cerebral, se cierne una gran incertidumbre en sus familiares y proveedores de atención médica sobre las posibilidades de recuperación, ya sea parcial o completa. Ahora, los investigadores han desarrollado un método innovador para predecir qué pacientes de la UCI pueden sobrevivir a una lesión cerebral grave.

Investigadores de la Western University (Ontario, Canadá) combinaron imágenes por resonancia magnética funcional (fMRI) con algoritmos avanzados de aprendizaje automático para abordar uno de los desafíos más apremiantes en cuidados intensivos: predecir los resultados de la recuperación después de lesiones cerebrales importantes. Trabajando junto con neurólogos, los investigadores monitorearon la actividad cerebral en 25 pacientes de la UCI durante los primeros días después de sus lesiones cerebrales. Su objetivo era descubrir si estas lecturas podían indicar qué pacientes sobrevivirían en última instancia. Trabajos anteriores del equipo habían demostrado que los posibles signos de recuperación podían captarse mediante la forma en que las diferentes regiones del cerebro interactuaban entre sí. Mantener estas conexiones interregionales es crucial para la restauración de la conciencia.

Los investigadores lograron un gran avance cuando descubrieron que podían combinar los datos de la resonancia magnética funcional con tecnología de aprendizaje automático. Esta innovadora integración les permitió predecir con un 80 % de precisión qué pacientes tenían probabilidades de recuperarse, una tasa que supera el estándar de atención actual. A pesar de este desarrollo prometedor, el equipo enfatiza que su método predictivo no es perfecto y merece investigación y validación adicionales.

“La inteligencia artificial moderna ha demostrado capacidades predictivas increíbles. Combinar esto con nuestras técnicas de imágenes existentes fue suficiente para predecir mejor quién se recuperará de sus lesiones”, afirmó Matthew Kolisnyk, estudiante de posgrado de la Western University.

Enlaces relacionados:
Western University  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Radiation Therapy Treatment Software Application
Elekta ONE
Miembro Plata
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
40/80-Slice CT System
uCT 528

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

Ultrasonido

ver canal
Imagen: un prototipo del dispositivo desarrollado (foto cortesía de KTU)

Dispositivo de ultrasonido mejora de forma no invasiva la circulación sanguínea en las extremidades inferiores

La circulación sanguínea deficiente en las extremidades inferiores es un problema de salud común entre los ancianos y es una complicación significativa de la diabetes, a menudo... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.