Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Primer sensor del mundo capaz de detectar errores en escáneres de resonancia magnética utilizando luz láser y gas

Por el equipo editorial de MedImaging en español
Actualizado el 31 May 2024
Print article
Imagen: El sensor de resonancia magnética o magnetómetro utiliza la luz láser y el gas para medir los campos magnéticos. (Foto cortesía de la Universidad de Copenhague)
Imagen: El sensor de resonancia magnética o magnetómetro utiliza la luz láser y el gas para medir los campos magnéticos. (Foto cortesía de la Universidad de Copenhague)

Los escáneres de resonancia magnética son herramientas diarias para médicos y profesionales de la salud, ya que brindan imágenes 3D incomparables del cerebro, órganos vitales y tejidos blandos, superando con creces en calidad a otras tecnologías de imágenes. A pesar de su papel fundamental en la atención sanitaria, estas máquinas no están exentas de fallos. Los fuertes campos magnéticos de los escáneres de resonancia magnética son propensos a fluctuaciones, lo que provoca errores de exploración y perturbaciones que requieren una calibración regular. Esta necesidad limita el uso de métodos de exploración avanzados, como las secuencias en espiral, que podrían reducir significativamente el tiempo necesario para diagnosticar afecciones como coágulos sanguíneos, esclerosis y tumores. Las secuencias en espiral también podrían hacer avanzar la investigación de la resonancia magnética, particularmente en el estudio de enfermedades cerebrales, pero la inestabilidad del campo magnético actualmente hace que tales exploraciones sean inviables.

En teoría, estos problemas podrían abordarse mediante un sensor que monitoree y mapee los cambios del campo magnético, permitiendo correcciones por computadora de los errores de imagen. Sin embargo, implementar esto en la práctica ha sido un desafío, ya que los sensores tradicionales que podrían realizar esta tarea interrumpen el campo magnético debido a su naturaleza eléctrica y componentes metálicos. Un investigador de la Universidad de Copenhague (Copenhague, Dinamarca) ha logrado un gran avance al inventar un nuevo tipo de sensor. Este sensor funciona utilizando luz láser dentro de cables de fibra y un pequeño recipiente de vidrio lleno de gas, lo que resultó eficaz en pruebas de prototipos.

Los escáneres de resonancia magnética funcionan generando un poderoso campo magnético que alinea los protones en el agua, los carbohidratos y las proteínas del cuerpo. Luego, estos protones son perturbados por ondas de radio pulsadas, lo que hace que se desalineen. A medida que se realinean con el campo magnético, emiten ondas de radio que se capturan para crear imágenes 3D en tiempo real de los tejidos objetivo. El nuevo sensor mapea con precisión las perturbaciones en el campo magnético, identificando la ubicación y la magnitud de estas perturbaciones. Este desarrollo innovador pronto podría permitir la corrección de imágenes de resonancia magnética distorsionadas, asegurando que sean precisas y confiables según los datos del sensor, mejorando así la efectividad y confiabilidad de los diagnósticos de resonancia magnética.

"Primero demostramos que era teóricamente posible y ahora hemos demostrado que se puede hacer en la práctica", afirmó Hans Stærkind, el arquitecto principal detrás del sensor y el dispositivo que lo acompaña. “De hecho, ahora tenemos un prototipo que básicamente puede realizar las mediciones necesarias sin alterar el escáner de resonancia magnética. Es necesario desarrollarlo más y perfeccionarlo, pero tiene el potencial de hacer que las exploraciones por resonancia magnética sean más baratas, mejores y más rápidas, aunque no necesariamente las tres cosas a la vez”.

Enlaces relacionados:
Universidad de Copenhague

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound System
S5000
Ultrasound Color LCD
U156W
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

Ultrasonido

ver canal
Imagen: un prototipo del dispositivo desarrollado (foto cortesía de KTU)

Dispositivo de ultrasonido mejora de forma no invasiva la circulación sanguínea en las extremidades inferiores

La circulación sanguínea deficiente en las extremidades inferiores es un problema de salud común entre los ancianos y es una complicación significativa de la diabetes, a menudo... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.