Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmos de IA permiten un diagnóstico de imagen médica altamente preciso y rentable

Por el equipo editorial de MedImaging en español
Actualizado el 14 Apr 2022
Print article
Imagen: Los nuevos algoritmos de IA pueden permitir diagnósticos de imagen médica altamente precisos y rentables (Fotografía cortesía de Pexels)
Imagen: Los nuevos algoritmos de IA pueden permitir diagnósticos de imagen médica altamente precisos y rentables (Fotografía cortesía de Pexels)

Las imágenes médicas son una parte importante de la atención médica moderna, ya que mejoran la precisión, la confiabilidad y el desarrollo del tratamiento para diversas enfermedades. La inteligencia artificial (IA) también se ha utilizado ampliamente para mejorar aún más el proceso. Sin embargo, el diagnóstico por imagen médica convencional que emplea algoritmos de IA requiere grandes cantidades de anotaciones como señales de supervisión para el entrenamiento del modelo. Para adquirir etiquetas precisas para los algoritmos de IA, los radiólogos, como parte de la rutina clínica, preparan informes de radiología para cada uno de sus pacientes, seguidos por el personal de anotación que extrae y confirma las etiquetas estructuradas de esos informes utilizando reglas definidas por humanos y herramientas de procesamiento de lenguaje natural existente (herramientas de PNL). La máxima precisión de las etiquetas extraídas depende de la calidad del trabajo humano y varias herramientas de PNL. El método tiene un alto precio, ya que requiere mucho trabajo y tiempo.

Ahora, un equipo de ingeniería de la Universidad de Hong Kong (HKU, Hong Kong) ha desarrollado un nuevo enfoque "REFERS" (Revisión de informes de texto libre para supervisión), que puede reducir el costo humano en un 90 %, al permitir la adquisición automática de señales de supervisión de cientos de miles de informes de radiología al mismo tiempo. Alcanza una alta precisión en las predicciones, superando a su contraparte del diagnóstico por imagen médica convencional que emplea algoritmos de IA. El enfoque innovador marca un paso sólido hacia la realización de inteligencia artificial médica generalizada.

Para entrenar a REFERS, el equipo de investigación utilizó una base de datos pública con 370.000 imágenes de rayos X e informes radiológicos asociados sobre 14 enfermedades torácicas comunes, incluidas atelectasia, cardiomegalia, derrame pleural, neumonía y neumotórax. Los investigadores lograron construir un modelo de reconocimiento de radiografías utilizando solo 100 radiografías que alcanzaron un 83 % de precisión en las predicciones. Cuando el número se incrementó a 1.000, su modelo exhibió un rendimiento asombroso con una precisión del 88,2 %, que superó a su homólogo entrenado con 10.000 anotaciones de radiólogos (precisión del 87,6 %). Cuando se utilizaron 10.000 radiografías, la precisión fue del 90,1 %. En general, un nivel de precisión superior al 85 % en las predicciones es útil en aplicaciones clínicas del mundo real.

REFERS logra el objetivo mediante la realización de dos tareas relacionadas con el informe, es decir, la generación de informes y la comparación entre radiografía e informe. En la primera tarea, REFERS traduce radiografías en informes de texto codificando primero las radiografías en una representación intermedia, que luego se utiliza para predecir informes de texto a través de una red de decodificación. Se define una función de costo para medir la similitud entre los textos de informe previstos y reales, en función de la cual se emplea la optimización basada en gradientes para entrenar la red neuronal y actualizar sus pesos. En cuanto a la segunda tarea, REFERS primero codifica tanto las radiografías como los informes de texto libre en el mismo espacio semántico, donde las representaciones de cada informe y sus radiografías asociadas se alinean a través del aprendizaje contrastivo.

"El diagnóstico de imágenes médicas habilitado por IA tiene el potencial de ayudar a los especialistas médicos a reducir su carga de trabajo y mejorar la eficiencia y precisión del diagnóstico, lo que incluye, entre otros, reducir el tiempo de diagnóstico y detectar patrones sutiles de enfermedades", dijo el profesor Yu Yizhou, líder del equipo del Departamento de Ciencias de la Computación de HKU en la Facultad de Ingeniería. "Creemos que las oraciones de razonamiento lógico abstracto y complejo en los informes de radiología brindan información suficiente para aprender características visuales fácilmente transferibles. Con la capacitación adecuada, REFERS aprende directamente representaciones de radiografías de informes de texto libre sin la necesidad de involucrar mano de obra en el etiquetado”.

“En comparación con los métodos convencionales que dependen en gran medida de las anotaciones humanas, REFERS tiene la capacidad de adquirir supervisión de cada palabra en los informes de radiología. Podemos reducir sustancialmente la cantidad de anotación de datos en un 90 % y el costo de construir inteligencia artificial médica. Marca un paso significativo hacia la realización de inteligencia artificial médica generalizada”, dijo el Dr. Zhou Hong-Yu, el primer autor del artículo.

Enlaces relacionados:
Universidad de Hong Kong

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Imaging System
P12 Elite
Wall Fixtures
MRI SERIES
New
3T MRI Scanner
MAGNETOM Cima.X

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.